Structural Basis for GTP-Dependent Dimerization of Hydrogenase Maturation Factor HypB
نویسندگان
چکیده
Maturation of [NiFe]-hydrogenase requires the insertion of iron, cyanide and carbon monoxide, followed by nickel, to the catalytic core of the enzyme. Hydrogenase maturation factor HypB is a metal-binding GTPase that is essential for the nickel delivery to the hydrogenase. Here we report the crystal structure of Archeoglobus fulgidus HypB (AfHypB) in apo-form. We showed that AfHypB recognizes guanine nucleotide using Asp-194 on the G5 loop despite having a non-canonical NKxA G4-motif. Structural comparison with the GTPγS-bound Methanocaldococcus jannaschii HypB identifies conformational changes in the switch I region, which bring an invariant Asp-72 to form an intermolecular salt-bridge with another invariant residue Lys-148 upon GTP binding. Substitution of K148A abolished GTP-dependent dimerization of AfHypB, but had no significant effect on the guanine nucleotide binding and on the intrinsic GTPase activity. In vivo complementation study in Escherichia coli showed that the invariant lysine residue is required for in vivo maturation of hydrogenase. Taken together, our results suggest that GTP-dependent dimerization of HypB is essential for hydrogenase maturation. It is likely that a nickel ion is loaded to an extra metal binding site at the dimeric interface of GTP-bound HypB and transferred to the hydrogenase upon GTP hydrolysis.
منابع مشابه
Dual roles of Bradyrhizobium japonicum nickelin protein in nickel storage and GTP-dependent Ni mobilization.
The hydrogenase accessory protein HypB, or nickelin, has two functions in the N(2)-fixing, H(2)-oxidizing bacterium Bradyrhizobium japonicum. One function of HypB involves the mobilization of nickel into hydrogenase. HypB also carries out a nickel storage/sequestering function in B. japonicum, binding nine nickel ions per monomer. Here we report that the two roles (nickel mobilization and stora...
متن کاملCharacterization of Helicobacter pylori nickel metabolism accessory proteins needed for maturation of both urease and hydrogenase.
Previous studies demonstrated that two accessory proteins, HypA and HypB, play a role in nickel-dependent maturation of both hydrogenase and urease in Helicobacter pylori. Here, the two proteins were purified and characterized. HypA bound two Ni(2+) ions per dimer with positive cooperativity (Hill coefficient, approximately 2.0). The dissociation constants K(1) and K(2) for Ni(2+) were 58 and 1...
متن کاملInteraction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation
The active site of [NiFe]-hydrogenase contains nickel and iron coordinated by cysteine residues, cyanide and carbon monoxide. Metal chaperone proteins HypA and HypB are required for the nickel insertion step of [NiFe]-hydrogenase maturation. How HypA and HypB work together to deliver nickel to the catalytic core remains elusive. Here we demonstrated that HypA and HypB from Archaeoglobus fulgidu...
متن کاملCrystal Structure Analysis of [NiFe] Hydrogenase Maturation Proteins
Introduction [NiFe]-hydrogenases harbor a complex metal cofactor, NiFe(CN)2CO, in their active sites. Its biosynthesis requires specific maturation machinery, in which six Hyp proteins (HypABCDEF) play key roles. Four Hyp proteins (HypCDEF) are involved in the biosynthesis and incorporation of the Fe(CN)2CO group. After Fe insertion, HypA and HypB insert the Ni ion into the hydrogenase large su...
متن کاملInvolvement of hyp gene products in maturation of the H(2)-sensing [NiFe] hydrogenase of Ralstonia eutropha.
The biosynthesis of [NiFe] hydrogenases is a complex process that requires the function of the Hyp proteins HypA, HypB, HypC, HypD, HypE, HypF, and HypX for assembly of the H(2)-activating [NiFe] site. In this study we examined the maturation of the regulatory hydrogenase (RH) of Ralstonia eutropha. The RH is a H(2)-sensing [NiFe] hydrogenase and is required as a constituent of a signal transdu...
متن کامل